> how it's frequently taught in absence of practical examples
Unfortunately this has been the debate for thousands of years. One of Euclid's students asked him what practical use geometry had. In response, Euclid instructed a servant to give the student a coin, saying, "He must make gain out of what he learns."
Legend aside, I'm actually surprised to see, many times actually, that people on HN criticized the "absence of practical examples". If we compare the textbooks written in the US and those in China or Europe, there's a sharp contrast. The textbooks from the US are thick, full of discussion of motivations and practical examples across multiple domains (Thomas' Calculus, for instance). In contrast, Chinese and European textbooks are terse and much thinner. They focus on proofs and derivations and have only sparse examples.
Personally, maths itself is practical enough. I'd even venture to say that those who can naturally progress to college-level maths should be able appreciate high-school maths for its own sake.
Unfortunately this has been the debate for thousands of years. One of Euclid's students asked him what practical use geometry had. In response, Euclid instructed a servant to give the student a coin, saying, "He must make gain out of what he learns."
Legend aside, I'm actually surprised to see, many times actually, that people on HN criticized the "absence of practical examples". If we compare the textbooks written in the US and those in China or Europe, there's a sharp contrast. The textbooks from the US are thick, full of discussion of motivations and practical examples across multiple domains (Thomas' Calculus, for instance). In contrast, Chinese and European textbooks are terse and much thinner. They focus on proofs and derivations and have only sparse examples.
Personally, maths itself is practical enough. I'd even venture to say that those who can naturally progress to college-level maths should be able appreciate high-school maths for its own sake.