Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

To expand on this a little bit more:

x86 has a general pattern of encoding operands, the ModR/M byte(s), which gives you either two register operands, or a register and a memory operand. Intel also did this trick that uses one of the register operand for extra opcode bits, at the cost of sacrificing one of the operands.

There are 8 escape opcodes, and all of them have a ModR/M byte trailing it. If you use two-address instructions, that gives you just 8 instructions you can implement... not enough to do anything useful! But if you're happy with one-address instructions, you get 64 instructions with a register operand and 64 instructions with a memory operand.

A stack itself is pretty easy to compile for, until you have to spill a register because there's too many live variables on the stack. Then the spill logic becomes a nightmare. My guess is that the designers were thinking along these lines--organizing the registers in the stack is an efficient way to use the encoding space, and a fairly natural way to write expressions--and didn't have the expertise or the communication to realize that the design came with some edge cases that were painfully sharp to deal with.





Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: