Thanks for the correction.
It seems that all the layman’s explanations on Galois theory i have seen have been simplified to the point of being technically wrong, as well as underselling it.
Technically, the actual statement in Galois theory is even more general. Roughly, it says that, for a given polynomial over a field, if there exists an algorithm that computes the roots of this polynomial, using only addition, subtraction, multiplication, division and radicals, then a particular algebraic structure associated with this polynomial, called its Galois group, has to have a very regular structure.
So it's a bit stronger than the term "closed formula" implies. You can then show explicit examples of degree 5 polynomials which don't fulfill this condition, prove a quantitative statement that "almost all" degree 5 polynomials are like this, explain the difference between degree 4 and 5 in terms of group theory, etc.